
We considered the problem of reconstructing the heat-flux density on one of the boundaries of an unbounded plate 
in which the process of heat transfer is described by a linear homogeneous heat-conduction equation. The boundary 
condition of the second kind at the other boundary of the plate was known. As the input data, we used the variation of 
temperature as a function of time at an interior point of the plate. The solution of the initial heat-conduction problem 
was represented in integral form. Furthermore, using the method of [ 1 ], we passed to a system of linear algebraic equations, 
for whichwe constructed the above-described algorithms. The inverse problem was solved both for the exact input data and 
for input data perturbed by means of a random-number device. When the input-temperature perturbations were up to i0% 
of the maximum value, a halt by the discrepancy principle was obtained within three to eight iterations, depending on the 
variant involved. When a constant descent parameter was used in analogous simulated examples, 30 to 60 iterations were 
required. 

NOTATION 

A, B, L, linear operators; u, element of the solution space U; f-, exact initial data; f, error in the initial data; 6, 
value of the error in the initial data; A -1, inverse operator; u00(T), the k-th derivative of the function u; ~ci(O , polynomials 
of degree i - 1; A*, B*, L*, operators conjugate to the operators A, B, L; J(g), discrepancy functional; J'g, gradient of the 
discrepancy functional; 13in, depth of descent with respect to the i-th component of the antigradient of the discrepancy in 
the n-th iteration; vm, length of the observation interval. 
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REGULARIZING ALGORITHM FOR INVERTING THE 

ABEL EQUATION 

Yu. E. Voskoboinikov UDC 517.948.32 

The article presents a regularizing algorithm for solving the Abel equation using information on the statistics of 
the error of measurement of the right-hand side of the equation. 

Optical methods have found widespread application in the diagnostics of electric arcs, impulse discharges, gas and 
plasma streams. The characteristics measured in the course of these operations are correlated with the sought local param- 
eters of the object by the Abel equation [1]: 

R 

t" q~(r) rdr 
2 I, ( r ~ - - x 2 )  1/2 -- [(x) ,  xC[0, RI- (I)  

x 

Formally, the solution of ~0(r) can be determined by inverting the Abel equation, i.e., 
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where f'(x) is the first derivative of the right-hand side of (1). The problem of calculating (2), like the problem of solving 
the initial equation (1), belongs to the incorrectly stated problems [2] whose characteristic trait is the instability of the 
solution as regards errors in the initial data. The instability of  (2) is due to the unboundedness of the differentiation 
operator. Moreover, the inevitable errors of measurement of the right-hand side may infringe the property of continuous 
differentiability of  the function fix), and this leads to the absence of a solution. A number of works (see, e.g., the review 
article [3]) suggested two methods to overcome the above difficulties. The first method involves approximation of the 
function f(x) by a linear combination of polynomials that are orthogonal in the entire interval of determination of  fix); 
the second method involves the approximation of the values of  the argument of  the function fix) in each separate interval 
by a polynomial of third to fifth degree. Though these methods ensure the existence of a continuous derivative, they have 
a definite shortcoming in the lack of constructive algorithms for selecting the parameters determining the degree of  smooth- 
ing of  the right-hand side of  fix) in dependence on the level of uncertainty of  the initial data. 

The present article suggests a regularizing algorithm for inverting the Abel equation on the basis of smoothing splines. 
It presents a procedure for selecting the parameter of the smoothing spline minimizing the rms error of smoothing the right- 
hand side of fix). 

Algorithm for Inverting the Abel Equation. In the experiment, the values of  the right-hand side of  fix) are recorded 
at the points xl : 0 = x x < x . z <  . . .  < x , ~  = R with some additive error ~i, i.e., the initial data for solving Eq. (1) are 
represented by an n-dimensional vector with the coordinates f~ --- f (&) § ~, i = 1, n . As regards the uncertainty of 

measurement, we assume that the vector ~ = {~, ~2 . . . . .  G} has zero mathematical expectation and the correlation matrix 
V~ = M [ ~  T ], where M['] is the operator of  mathematical expectation; T is the symbol of transposition. 

To calculate ~p(r) on the basis of  (2) it is necessary to determine some differentiated function approximating the 
right-hand side of  fix). We will examine this problem in the statement leading to cubic splines: it is essential to construct 
a function Sn,~(x), differentiated in the interval [0, R], which minimizes the functional [4]: 

R n 

. ~  is (~)l = ~ f' (s" (~)}z d~ + ~ pT' G - s (x,)) ~-, 
b i = 1  

where pi(pi > 0) are tl~e weight factors characterizing the significance of the i-th measurement. It was shown in [4] that 
the solution of  this problem exists in the class of cubic splines, i.e., Sn,~(x) satisfies the conditions: 

a) in each of the intervals [&, x~+d, i = 1, n - - l ,  the function Sm~(x) is a cubic polynomial 

S~,~ (x) = at + b~ (x - -  xi)  + ci (x - -  xl)  z + d l  (x - -  xl)a; 

b) the function Sn, ~ (x) and its first two derivatives S;,.~ (x), S~.~ (x) are everywhere continuous in [0, R], i.e., 
S,,,~ (x) C C~o,sj ; 

c) S~,~(O) = f' (0), S'~,c~(R) = [ '  (R) are the boundary condit ions of the spline. 

Remark. For the solution ~(r) on the segment [0, R] to be bounded, the function fix) has to satisfy the constraints 
f' (0) = 0, f (R) = 0 .  It is therefore necessary that Sn,a(0) = 0, and for determinacy we put Sn,~(R) = 0. 

After we have calculated (with specified smoothing parameter) the coefficients a~, b~, ci, dl (see [4, 5]), the deriva- 
tive if(x) for x E [xi, xi+d is determined by the polynomial S~,~ (x) = bl + 2c~ (x - -  xi) + 3di (x - -  x~)L This makes it possible 
to reduce the inversion of (2) to the summing of  the integrals of the type 

Xi@l  

.t' 
x i 

(x - -  x i )  ~ (x 2 - -  r'-) - ~ / 2  dx ,  k = O ,  2. 

The values of  these integrals are expressed by elementary functions, and this makes it possible to represent the regularized 
solution ~0(r) of Eq. (1) in the form 

n - - I  - - [  x ] ~ ( r ) =  1 l ( r ,  r, X,~)T I(r ,  x~, xi+t) , (3) 

where 

I (r, xt, x~+i) = (2c~ - -  6d~xi) (D~+~ - -  Di) + (bi - -  2c~xi + 

+ 3 d ~ x y +  1.5dtr 2) lI1 ( x i §  ) x~ + D~ , + 1.5di (xi+~D,+~ - -  xiDi);  

D~ = (x~ __ rZ//~ 
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and m is determined from the condition xm_~ ~ r < xm . 

Algorithm for Selecting the Smoothing Parameter. The selection of the smoothing parameter, which was previously 
considered specified, represents the chief difficulty in constructing the smoothing spline. The point is that when a is small, 
the smoothing of the uncertainty of  measurement is slight, and in the derivative S~ ~(x) oscillations appear which do not 
exist in f'(x). When the values of a are large, the function Sn, a (x) is excessively si~ooth. Moreover, a has to be selected 
in such a way that when the level of  the uncertainty of  measurement tends to zero, the smoothing spline converges to the 
interpolating spline Sn(x), which, in addition to a), b), c), satisfies the condition d ) S ~ ( x z ) =  f (&) ,  i = 1, n. 

Voskoboinikov [5] suggested a criterion of optimum approximation to the experimental information, and on its 
basis an algorithm for estimating the optimum value of the parameter a was devised, minimizing the rms error of  smooth- 
ing. As to its computing procedure, the algorithm is analogous to the algorithm for selecting the regularization parameter 
which was explained in [6]. The present work presents only the basic relationships for calculating the smoothing parameter. 

We designate by e(a) the discrepancy vector with the coordinates e~ (a) = [~ - -  S~,= (xd . A sufficient condition of 
optimality of  the value a is the identity [5]: 

V~(~) = c~V~H ~ (ccHPH ~ + A) -1 HP,  (4) 

where V~(a) = M [e (a) e" (c0] is the matrix of  the second moments  of the vector e(a). The matrices H, P, A were deter- 
mined in [5]. To calculate the value of the smoothing parameter o~ that does not conflict in the statistical sense with the 
identity (4), we devise a calculating procedure with respect to 7 = f/co in the form [5]: 

[R (",'h) - -  n] Yh+l=?h , k = 0 ,  1, 2 . . . . .  ? o > 0 ,  (5) 
R' (w)  

where 

R (?) = [~V~ ~ P H ~ ( H P H  ~ + ?A) -~ HI. 

As ag we adopt the value 1/Tk at which R (?k) ~ [~, (fl/2), ~,, (1 - -  ~/2)J, w h e r e , ,  (~/2) - t5/2 is the quantfle of the 

X2-distribution with n degrees of freedom; ~J is the magnitude of the error of  first kind in verifying the hypothesis (4). 

Is the Algorithm of Inverting (3)Regularizing? Inversion of the Abel equation with exact right-hand side can be 
represented in operator form r = B(r, x)Df(x), B(r, x) is the integral operator with kernel (x 2 -  rZ) - I /2  , and D is the 
differentiation operator. The constructed inversion (3) can also be written in the form q%(r)= B(r ,  x ) D T ~ , ~ ( x ) f ,  where 

T,,~ (x): E,~--,-C~0,~] is the operator putting into correspondence the vector f~ En and the twice-differentiated function 

S,,.~, (x) ~ C~o,~ . 

For the algorithm of inverting (3) to be regularizing, it suffices to prove the convergence [2]: 

lira max [r (r) -- ~ (r)l = 0, (6) 
n ~ , 6 ~ O  rG[0,R ] 

where 8 = Sp[V~] is the trace of  the matrix V~. The operator B(r, x) is perfectly continuous, therefore (6) converges if 

lim max I f (x ) - -  S,,,~(x)! = 0, (7) 
n ~  ,6~O x~[0,R]  

We require two statements. 

Statement 1 [5]. The algorithm (5) for selecting the smoothing parameter guarantees the convergence 

lira max IS, (x ) - -  Sn,~ (x)[ = 0. 
6+0 xe [0 ,Rl  

Statement 2 [4, p. 90]. I f / ( x ) E  C[0,RI and the integration spline Sn(x) satisfies the boundary conditions c), 
then 

lim max I[ (x) - -  S~ (x)[ = 0, 
An~O xe[O,R] 

where A,~ = max Ix~+~-- &!. From these two statements and from the inequality 

If (x) - -  Sn.~ (x)l ~< If (x) - -  S~ (x)l + I G  (x) - -  S~,~ (x)l 

the convergence of (7) follows directly. Thereby we have proved the following statement. 
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Statement 3. The algorithm (3) for inverting the Abel equation with the parameter C~g, d~ ~ermined by procedure (5), 
is regularizing in the space C[0,R 1. It is realized in the form of a subprogram in the computer language FORTRAN IV and 

is widely used at the Institute of Thermophysics, Siberian Branch of the Academy of Sciences of the USSR, in processing 
experimental results. 

In conclusion we want to dwell on some computing features of the suggested algorithm. 

1. The algorithm makes it possible to construct the solution of the Abel equation with correlated uncertainties of 
measurement of the right,hand side (the structure of the matrix is different from the diagonal structure). 

2. The algorithm is rapid. For instance, the computer time for constructing % (r) with n = 40 was about 0.8 sec 
(the calculation was carried out on an M4030 computer), which is 2 to 3 orders of magnitude less than with other regular 
methods of solving Eq. (1). 

3. The a lgof i~mis  economical as regards utilization of the internal memory of the computer. For instance, for 
storing the initial information, the working bodies of information, and the solution, the required storage capacity is 10 • n 
words; this makes it possible to construct a solution vector with the dimension of several hundreds or even thousands of 
points without having recourse to the external memory of the computer. 

NOTATION 

~0(r), f(x), solution and right-hand side of the Abel equation, respectively; ~, value of the right-hand side measured 
at point xi; ~i, uncertainty of the i-th measurement; n, number of measurements of the right-hand side; V~, correlation 

matrix of the uncertainty of measurement; ce, smoothing parameter; Sn(X) , interpolating spline; Sn,~(x) , smoothing spline; 

ai, hi, ~,  dl, coefficients of the smoothing spline; ~o (r), regularized solution of the Abel equation; e(c0, discrepancy 
vector; Sp[V~], trace of the matrix V s. 
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